Social Media Marketing Optimization Method Based on Deep Neural Network and Evolutionary Algorithm
Author(s) -
Qing Bian
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/5626351
Subject(s) - computer science , social media , artificial neural network , scheme (mathematics) , the internet , algorithm , artificial intelligence , optimization problem , mathematical optimization , machine learning , mathematics , world wide web , mathematical analysis
Under the background of the vigorous development of China’s market economy, the marketing mix is constantly updated, which promotes the all-round development of various industries. Social media marketing has formed a relatively solid theoretical and practical foundation, especially with the continuous updating and iteration of Internet technology and the improvement of people’s requirements for experience, and we must find ways to optimize the methods of social media marketing. This study mainly introduces several optimization methods of social media marketing based on deep neural networks and advanced algorithms, and the experiments of gradient-based back-propagation algorithm and adaptive Adam’s optimization algorithm show that the proposed optimization algorithm can easily achieve the global optimal state based on the combination of back-propagation algorithm and Adam’s optimization algorithm. Accuracy of marketing is very important, so we introduce a scheme of how to accurately market, and the scheme is effective. Firstly, the FCE model is constructed by a three-layer back-propagation neural network, and then, the data input layer is designed to achieve the effect of the model.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom