z-logo
open-access-imgOpen Access
Synthesis, DNA-Binding, Anticancer Evaluation, and Molecular Docking Studies of Bishomoleptic and Trisheteroleptic Ru-Diimine Complexes Bearing 2-(2-Pyridyl)-quinoxaline
Author(s) -
Sofia Balou,
Αθανάσιος Ζαρκαδούλας,
Maria Koukouvitaki,
Luciano Marchiò,
Eleni Κ. Efthimiadou,
Christiana A. Mitsopoulou
Publication year - 2021
Publication title -
bioinorganic chemistry and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.865
H-Index - 35
eISSN - 1565-3633
pISSN - 1687-479X
DOI - 10.1155/2021/5599773
Subject(s) - diimine , quinoxaline , chemistry , ruthenium , crystallography , monoclinic crystal system , dna , orthorhombic crystal system , supramolecular chemistry , docking (animal) , guanine , proton nmr , stereochemistry , crystal structure , biochemistry , organic chemistry , medicine , nursing , catalysis , nucleotide , gene
Herein, we report the synthesis and characterization of a bishomoleptic and a trisheteroleptic ruthenium (II) polypyridyl complex, namely, [Ru(bpy)2(2, 2′-pq)](PF6)2 (1) and [Ru(bpy) (phen) (2, 2′-pq)](PF6)2 (2), respectively, where bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, and 2, 2′-pq = 2-(2′-pyridyl)-quinoxaline. The complexes were characterized by elemental analysis, TGA, 1 H-NMR, FT-IR, UV-Vis, emission spectroscopy, and electrochemistry. Their structures were confirmed by single-crystal X-ray diffraction analysis. Complexes 1 and 2 were crystalized in orthorhombic, Pbca, and monoclinic, P21/ n systems, respectively. Various spectroscopic techniques were employed to investigate the interaction of both complexes with calf thymus DNA (CT-DNA). The experimental data were confirmed by molecular docking studies, employing two different DNA sequences. Both complexes, 1 and 2, bind with DNA via a minor groove mode of binding. MTT experiments revealed that both complexes induce apoptosis of MCF-7 (breast cancer) cells in low concentrations. Confocal microscopy indicated that 2 localizes in the nucleus and internalizes more efficiently in MCF-7 than in HEK-293.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom