Drug-Target Interaction Prediction via Dual Laplacian Graph Regularized Logistic Matrix Factorization
Author(s) -
Wang Ai-zhen,
Minhui Wang
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/5599263
Subject(s) - pairwise comparison , matrix decomposition , computer science , laplacian matrix , graph , drug target , benchmark (surveying) , stochastic gradient descent , artificial intelligence , machine learning , theoretical computer science , biology , eigenvalues and eigenvectors , physics , geodesy , quantum mechanics , artificial neural network , pharmacology , geography
Drug-target interactions provide useful information for biomedical drug discovery as well as drug development. However, it is costly and time consuming to find drug-target interactions by experimental methods. As a result, developing computational approaches for this task is necessary and has practical significance. In this study, we establish a novel dual Laplacian graph regularized logistic matrix factorization model for drug-target interaction prediction, referred to as DLGrLMF briefly. Specifically, DLGrLMF regards the task of drug-target interaction prediction as a weighted logistic matrix factorization problem, in which the experimentally validated interactions are allocated with larger weights. Meanwhile, by considering that drugs with similar chemical structure should have interactions with similar targets and targets with similar genomic sequence similarity should in turn have interactions with similar drugs, the drug pairwise chemical structure similarities as well as the target pairwise genomic sequence similarities are fully exploited to serve the matrix factorization problem by using a dual Laplacian graph regularization term. In addition, we design a gradient descent algorithm to solve the resultant optimization problem. Finally, the efficacy of DLGrLMF is validated on various benchmark datasets and the experimental results demonstrate that DLGrLMF performs better than other state-of-the-art methods. Case studies are also conducted to validate that DLGrLMF can successfully predict most of the experimental validated drug-target interactions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom