z-logo
open-access-imgOpen Access
Performance Analysis of Identifier Locator Communication Cache Effects on ILNPv6 Stack
Author(s) -
Mohsen Kadi,
Maher Suleiman,
Samih M. Jammoul
Publication year - 2021
Publication title -
journal of computer networks and communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.355
H-Index - 23
eISSN - 2090-715X
pISSN - 2090-7141
DOI - 10.1155/2021/5599254
Subject(s) - computer science , computer network , identifier , protocol stack , cache , multihoming , host (biology) , network packet , distributed computing , operating system , the internet , internet protocol , ecology , wireless sensor network , biology
Identifier-locator network protocol (ILNP) is a host-based identifier/locator split architecture scheme (ILSA), which depends on address rewriting to support end-to-end mobility and multihoming. The address rewriting is performed by hosts using a network layer logical cache that stores state information related to the communicated hosts, which is called identifier-locator communication cache (ILCC). Since address rewriting is executed on a packet basis in ILNP, ILCC lookups are required at each packet reception and transmission. This leads to a strong correlation between the host’s network stack performance and ILCC performance. This paper presents a study of the effect of ILCC size on network stack performance. Within this paper, a direct comparison of the performance of two ILNP prototypes that differ by ILCC management mechanism is conducted. We present ILCC size measurements and study their effects on the host’s network stack performance. The results show that ILCC growth caused by correspondents increase has a significant effect on the latency of both network and transport layers. The obtained results show that controlling ILCC size through an effective policy strongly enhances ILNP network stack performance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom