z-logo
open-access-imgOpen Access
CNN-Enabled Visibility Enhancement Framework for Vessel Detection under Haze Environment
Author(s) -
Yuxu Lu,
Yu Guo,
Maohan Liang
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/5598390
Subject(s) - computer science , visibility , haze , robustness (evolution) , artificial intelligence , feature extraction , computer vision , feature (linguistics) , finite element method , fuse (electrical) , pattern recognition (psychology) , engineering , biochemistry , chemistry , physics , linguistics , philosophy , electrical engineering , structural engineering , meteorology , optics , gene
Maritime images captured under haze environment often have a terrible visual effect, making it easy to overlook important information. To avoid the failure of vessel detection caused by fog, it is necessary to preprocess the collected hazy images for recovering vital information. In this paper, a novel CNN-enabled visibility dehazing framework is proposed, consisting of two subnetworks, that is, Coarse Feature Extraction Module (C-FEM) and Fine Feature Fusion Module (F-FFM). Specifically, C-FEM is a multiscale haze feature extraction network, which can learn information from three scales. Correspondingly, F-FFM is an improved encoder-decoder network to fuse multiscale information obtained by C-FEM and enhance the visual effect of the final output. Meanwhile, a hybrid loss function is designed for monitoring the multiscale output of C-FEM and the final result of F-FFM simultaneously. It is worth mentioning that massive maritime images are considered the training dataset to further adapt the vessel detection task under haze environment. Comprehensive experiments on synthetic and realistic images have verified the superior effectiveness and robustness of our CNN-enabled visibility dehazing framework compared to several state-of-the-art methods. Our method preprocesses images before vessel detection to demonstrate our framework has the capacity of promoting maritime video surveillance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom