Automorphism Group and Other Properties of Zero Component Graph over a Vector Space
Author(s) -
Shikun Ou,
Yanqi Fan,
Qunfang Li
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/5595620
Subject(s) - mathematics , combinatorics , discrete mathematics , graph automorphism , vector space , automorphism , line graph , voltage graph , graph , pure mathematics
In this paper, we introduce an undirected simple graph, called the zero component graph on finite-dimensional vector spaces. It is shown that two finite-dimensional vector spaces are isomorphic if and only if their zero component graphs are isomorphic, and any automorphism of a zero component graph can be uniquely decomposed into the product of a permutation automorphism and a regular automorphism. Moreover, we find the dominating number, as well as the independent number, and characterize the minimum independent dominating sets, maximum independent sets, and planarity of the graph. In the case that base fields are finite, we calculate the fixing number and metric dimension of the zero component graphs and determine vector spaces whose zero component graphs are Hamiltonian.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom