z-logo
open-access-imgOpen Access
Optimal Network Defense Strategy Selection Method: A Stochastic Differential Game Model
Author(s) -
Yan Mi,
Hengwei Zhang,
Hao Hu,
Jinglei Tan,
Jindong Wang
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/5594697
Subject(s) - computer science , construct (python library) , differential game , process (computing) , saddle point , mathematical optimization , network security , computer security , computer network , geometry , mathematics , operating system
In a real-world network confrontation process, attack and defense actions change rapidly and continuously. The network environment is complex and dynamically random. Therefore, attack and defense strategies are inevitably subject to random disturbances during their execution, and the transition of the network security state is affected accordingly. In this paper, we construct a network security state transition model by referring to the epidemic evolution process, use Gaussian noise to describe random effects during the strategy execution, and introduce a random disturbance intensity factor to describe the degree of random effects. On this basis, we establish an attack-defense stochastic differential game model, propose a saddle point equilibrium solution method, and provide an algorithm to select the optimal defense strategy. Our method achieves real-time defense decision-making in network attack-defense scenarios with random disturbances and has better real-time performance and practicality than current methods. Results of a simulation experiment show that our model and algorithm are effective and feasible.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom