DDoS Detection Using a Cloud-Edge Collaboration Method Based on Entropy-Measuring SOM and KD-Tree in SDN
Author(s) -
Yuhua Xu,
Yunfeng Yu,
Hanshu Hong,
Zhixin Sun
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/5594468
Subject(s) - computer science , denial of service attack , cloud computing , software defined networking , forwarding plane , application layer ddos attack , entropy (arrow of time) , tree (set theory) , computer network , data mining , distributed computing , the internet , real time computing , operating system , mathematical analysis , physics , mathematics , quantum mechanics , network packet
Software-defined networking (SDN) emerges as an innovative network paradigm, which separates the control plane from the data plane to improve the network programmability and flexibility. It is widely applied in the Internet of Things (IoT). However, SDN is vulnerable to DDoS attacks, which can cause network disasters. In order to protect SDN security, a DDoS detection method using cloud-edge collaboration based on Entropy-Measuring Self-organizing Maps and KD-tree (EMSOM-KD) is designed for SDN. Entropy measurement is utilized to select the ideal SOM map and classify SOM neurons considering the limitation of dead and suspicious neurons. EMSOM can detect most flows directly and filter out a few doubtable flows. Then these flows are fine-grained, identified by KD-tree. Due to the limited and precious resources of the controller, parameter computation is performed in the cloud. The edge controller implements DDoS detection by EMSOM-KD. The experiments are conducted to evaluate the performance of the proposed method. The results show that EMSOM-KD has better detection accuracy; moreover, it improves the KD-tree detection efficiency.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom