A Search Method for Optimal Band Combination of Hyperspectral Imagery Based on Two Layers Selection Strategy
Author(s) -
Nian Chen,
Kezhong Lu,
Hao Zhou
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/5592323
Subject(s) - hyperspectral imaging , computer science , pattern recognition (psychology) , set (abstract data type) , selection (genetic algorithm) , cluster analysis , artificial intelligence , dimensionality reduction , curse of dimensionality , data set , correlation , correlation coefficient , data mining , mathematics , machine learning , geometry , programming language
A band selection method based on two layers selection (TLS) strategy, which forms an optimal subset from all-bands set to reconstitute the original hyperspectral imagery (HSI) and aims to cost a fewer bands for better performances, is proposed in this paper. As its name implies, TLS picks out the bands with low correlation and a large amount of information into the target set to reach dimensionality reduction for HSI via two phases. Specifically, the fast density peaks clustering (FDPC) algorithm is used to select the most representative node in each cluster to build a candidate set at first. During the implementation, we normalize the local density and relative distance and utilize the dynamic cutoff distance to weaken the influence of density so that the selection is more likely to be carried out in scattered clusters than in high-density ones. After that, we conduct a further selection in the candidate set using mRMR strategy and comprehensive measurement of information (CMI), and the eventual winners will be selected into the target set. Compared with other six state-of-the-art unsupervised algorithms on three real-world HSI data sets, the results show that TLS can group the bands with lower correlation and richer information and has obvious advantages in indicators of overall accuracy (OA), average accuracy (AA), and Kappa coefficient.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom