PSR: Unified Framework of Parameter-Learning-Based MR Image Superresolution
Author(s) -
Huanyu Liu,
Jiaqi Liu,
Junbao Li,
JengShyang Pan,
Xiaqiong Yu
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/5591660
Subject(s) - computer science , superresolution , artificial intelligence , feature (linguistics) , dictionary learning , block (permutation group theory) , image (mathematics) , pattern recognition (psychology) , image resolution , limit (mathematics) , magnetic resonance imaging , iterative reconstruction , algorithm , mathematics , mathematical analysis , philosophy , linguistics , geometry , medicine , radiology
Magnetic resonance imaging has significant applications for disease diagnosis. Due to the particularity of its imaging mechanism, hardware imaging suffers from resolution and reaches its limit, and higher radiation intensity and longer radiation time will cause damage to the human body. The problem is expected to be solved by a superresolution algorithm, especially the image superresolution based on sparse reconstruction has good performance. Dictionary generation is a key issue that affects the performance of superresolution algorithms, and dictionary performance is affected by dictionary construction parameters: balance parameters, dictionary size, overlapping block size, and a number of training sample blocks. In response to this problem, we propose an optimal dictionary construction parameter search method through the experiment to find the optimal dictionary construction parameters on the MR image and compare them with the dictionary obtained by multiple sets of random dictionary construction parameters. The dictionary we searched for the optimal parameters of the dictionary construction training has more powerful feature expressions, which can improve the superresolution effect of MR images.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom