z-logo
open-access-imgOpen Access
Optimum Energy Flow Management of a Grid-Tied Photovoltaic-Wind-Battery System considering Cost, Reliability, and CO2 Emission
Author(s) -
Meryeme Azaroual,
Mohammed Ouassaid,
Mohamed Maâroufi
Publication year - 2021
Publication title -
international journal of photoenergy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.426
H-Index - 51
eISSN - 1687-529X
pISSN - 1110-662X
DOI - 10.1155/2021/5591456
Subject(s) - photovoltaic system , battery (electricity) , computer science , renewable energy , greenhouse gas , reliability engineering , tariff , automotive engineering , environmental economics , grid , reliability (semiconductor) , mathematical optimization , business , power (physics) , engineering , economics , electrical engineering , ecology , physics , geometry , mathematics , quantum mechanics , international trade , biology
The main goal of this paper is to explore the performance of a residential grid-tied hybrid (GTH) system which relies on economic and environmental aspects. A photovoltaic- (PV-) wind turbine- (WT-) battery storage system with maximizing self-consumption and time-of-use (ToU) pricing is conducted to examine the system efficiency. In so doing, technical optimization criteria with taking into consideration renewable energy benefits including feed-in-tariff (FIT) and greenhouse gas emission (GHG) reduction are analyzed. As the battery has a substantial effect on the operational cost of the system, the energy management strategy (EMS) will incorporate the daily operating cost of the battery and the effect of the degradation. The model can give the opportunity to the network to sell or purchase energy from the system. The simulation results demonstrate the effectiveness of the proposed approach in which the new objective function achieves the maximum cost-saving (99.81%) and income (5.16 $/day) compared to other existing strategies as well as the lowest GHG emission. Furthermore, the battery enhances the best daily self-consumption and load cover ratio. Then, as the model is nonlinear, a comparison with other existing algorithms is performed to select the feasible, robust, and reliable model for the residential application. A hybrid algorithm (HGAFMINCON) is developed to demonstrate the superiority of the algorithm over FMINCON and GA shown in terms of cost savings and income.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom