z-logo
open-access-imgOpen Access
Simultaneous Pickup and Delivery Traveling Salesman Problem considering the Express Lockers Using Attention Route Planning Network
Author(s) -
Yu Du,
Shaochuan Fu,
Changxiang Lu,
Qiang Zhou,
Chunfang Li
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/5590758
Subject(s) - travelling salesman problem , pickup , computer science , software deployment , trips architecture , mathematical optimization , operations research , artificial intelligence , algorithm , mathematics , parallel computing , image (mathematics) , operating system
This paper presents a simultaneous pickup and delivery route designing model, which considers the use of express lockers. Unlike the traditional traveling salesman problem (TSP), this model analyzes the scenario that a courier serves a neighborhood with multiple trips. Considering the locker and vehicle capacity, the total cost is constituted of back order, lost sale, and traveling time. We aim to minimize the total cost when satisfying all requests. A modified deep Q-learning network is designed to get the optimal results from our model, leveraging masked multi-head attention to select the courier paths. Our algorithm outperforms other stochastic optimization methods with better optimal solutions and O ( n ) computational time in evaluation processes. The experiment has shown that reinforcement learning is a better choice than traditional stochastic optimization methods, consuming less power and time during evaluation processes, which indicates that this approach fits better for large-scale data and broad deployment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom