Game-Based Multiobjective Optimization of Suspension System for In-Wheel Motor Drive Electric Vehicle
Author(s) -
Tang Feng,
Lin Shu
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5589199
Subject(s) - smoothness , control theory (sociology) , vibration , acceleration , suspension (topology) , convergence (economics) , electric vehicle , computer science , mathematical optimization , engineering , mathematics , artificial intelligence , homotopy , mathematical analysis , power (physics) , physics , control (management) , classical mechanics , quantum mechanics , pure mathematics , economics , economic growth
Since the driving motor is embedded in the wheel, the unsprung mass and the wheel rotational inertia of the in-wheel motor drive electric vehicle both increase, which not only affect the vehicle smoothness but also worsen the motor’s working condition due to its own vertical vibration. The evaluation index of in-wheel motor’s vertical vibration is introduced on the basis of vehicle smoothness analysis. The parameters’ optimization of vibration absorber and suspension are carried out, respectively, and the optimization results show the contradictory relationship between smoothness objective and the motor’s vertical vibration acceleration objective. Regarding the contradictory indices of the smoothness and the motor’s vertical acceleration as the objective function, a multiobjective optimization scheme is designed. Then, the orthogonal experimentation and fuzzy clustering method are applied in the multiobjective optimized design based on the game decision analysis, and the Nash equilibrium and cooperative competition game theory are used to optimize the parameters of suspension and vibration absorber. The optimized results verify the game relation between the optimization variables, the game optimization obtains better optimized results than traditional linear weight sum method, and the in-wheel motor functional stability and the vehicle smoothness can be both achieved. Compared with the traditional complex iterative process and the manmade preassurance weight allocation, the game optimization has the advantages of less iterations, faster convergence, and less influence by human experience.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom