Compound Grey-Logistic Model and Its Application
Author(s) -
Xiaolan Wu,
Shengyuan Wang,
Guoyin Xu
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5588798
Subject(s) - logistic regression , entropy (arrow of time) , computer science , adaptability , data mining , statistics , transformation (genetics) , population , data transformation , artificial intelligence , econometrics , mathematics , machine learning , data warehouse , ecology , biochemistry , chemistry , physics , demography , quantum mechanics , sociology , gene , biology
Logistic regression model is widely used in ecology and in the analysis of social economic systems, because of its good adaptability. In order to improve the measurement accuracy of logistic model, this paper proposes a new method. A compound grey-logistic model is developed to carry out the grey transformation of the original data. Practice shows that the grey transformation data has better simulation accuracy; at the same time, grey transformation can reduce the observation noise of the original data. Mean absolute percentage error index has been used to evaluate the accuracy of prediction model, and information entropy can be used to evaluate the change of information entropy of forecasting data. In this paper, three cases are used to verify the applicability of grey-logistic model. From the perspective of the type of original data, the three cases represent three different data conditions: sufficient data, insufficient data, and fragmentary data. The cases represent different related fields: market share data, economic growth data, and R&D output data. The results show that the proposed grey-logistic method can effectively carry out the population growth analysis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom