z-logo
open-access-imgOpen Access
Pulmonary Lobe Segmentation in CT Images Based on Lung Anatomy Knowledge
Author(s) -
Yuanyuan Peng,
Hualan Zhong,
Zheng Xu,
Hongbin Tu,
Xiong Li,
Peng Lan
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5588629
Subject(s) - segmentation , lung , lobe , fissure , anatomy , medicine , radiology , computer science , artificial intelligence , geology , paleontology
In computed tomography (CT) images, pulmonary lobe segmentation is an arduous task due to its complex structures. To remedy the problem, we introduce a new framework based on lung anatomy knowledge for lung lobe segmentation. Firstly, the priori knowledge of lung anatomy is used to identify the fissure region of interest. Then, an oriented derivative of stick filter is applied to isolate plate-like structures from clutters for lobar fissure verification. Finally, a surface fitting model is employed to complete the incomplete fissure surface for lung lobe segmentation. Compared with manually segmented fissure references, the designed approach obtained a high median F1-score of 0.8865 in the left lung and obtained a high median F1-score of 0.9200 in the right lung. The average percentages of the segmented lung lobes in the lung lobe ground truth are 0.960, 0.989, 0.973, 0.920, and 0.985 for the left upper, left lower, right upper, right middle, and right lower lobes, respectively. The perfect performance of the proposed scheme is tested by visual inspection and quantitative evaluation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom