An Experimental Study on the Particle Size and Shape Distribution of Coal Drill Cuttings by Dynamic Image Analysis
Author(s) -
Zhigang Zhang,
Xiangyun Lan,
Guangcai Wen,
Qingming Long,
Xuelin Yang
Publication year - 2021
Publication title -
geofluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.44
H-Index - 56
eISSN - 1468-8123
pISSN - 1468-8115
DOI - 10.1155/2021/5588248
Subject(s) - log normal distribution , ellipse , logarithm , shape factor , mathematics , particle (ecology) , distribution (mathematics) , shape parameter , particle size , mathematical analysis , geometry , statistics , physics , geology , paleontology , oceanography
Particle size and shape distribution can be measured in great detail by dynamic image analysis (DIA). The narrow dispersion of repeated experiment results indicates that the particle size distribution can be obtained with high reliability. Particle size distribution can be better fitted to Rosin-Rammler equation than Gaudin-Schuhmann distribution and the lognormal distribution. The spread parameter ( m ) and the location parameters ( d 0 ) of the Rosin-Rammler equation can be calculated precisely. We analyzed the similarities and differences between the different particle shape distributions. The distributions of form factor and circularity are right-skewed distributions, while the distributions of ellipse ratio, irregularity, and aspect ratio obey a normal distribution. By studying the relation between particle size and shape, we find a linear relationship between the ellipse ratio and the Legendre ellipse diameter on the logarithmic scale.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom