z-logo
open-access-imgOpen Access
An Automatic Knee Osteoarthritis Diagnosis Method Based on Deep Learning: Data from the Osteoarthritis Initiative
Author(s) -
Yifan Wang,
Xianan Wang,
Tianning Gao,
Le Du,
Wei Liu
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/5586529
Subject(s) - osteoarthritis , computer science , artificial intelligence , grading (engineering) , segmentation , deep learning , machine learning , medicine , pathology , civil engineering , alternative medicine , engineering
Osteoarthritis (OA) is the most common form of arthritis. According to the evidence presented on both sides of the knee bones, radiologists assess the severity of OA based on the Kellgren–Lawrence (KL) grading system. Recently, computer-aided methods are proposed to improve the efficiency of OA diagnosis. However, the human interventions required by previous semiautomatic segmentation methods limit the application on large-scale datasets. Moreover, well-known CNN architectures applied to the OA severity assessment do not explore the relations between different local regions. In this work, by integrating the object detection model, YOLO, with the visual transformer into the diagnosis procedure, we reduce human intervention and provide an end-to-end approach to automatic osteoarthritis diagnosis. Our approach correctly segments 95.57% of data at the expense of training on 200 annotated images on a large dataset that contains more than 4500 samples. Furthermore, our classification result improves the accuracy by 2.5% compared to the traditional CNN architectures.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom