Doppler Spread Estimation Based on Machine Learning for an OFDM System
Author(s) -
Eunchul Yoon,
Soonbum Kwon,
Unil Yun,
Sun Yong Kim
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/5586029
Subject(s) - computer science , channel (broadcasting) , preprocessor , doppler effect , channel state information , machine learning , artificial intelligence , orthogonal frequency division multiplexing , artificial neural network , data pre processing , sequence (biology) , algorithm , wireless , telecommunications , physics , astronomy , biology , genetics
In this paper, we propose a Doppler spread estimation approach based on machine learning for an OFDM system. We present a carefully designed neural network architecture to achieve good performance in a mixed-channel scenario in which channel characteristic variables such as Rician K factor, azimuth angle of arrival (AOA) width, mean direction of azimuth AOA, and channel estimation errors are randomly generated. When preprocessing the channel state information (CSI) collected under the mixed-channel scenario, we propose averaged power spectral density (PSD) sequence as high-quality training data in machine learning for Doppler spread estimation. We detail intermediate mathematical derivatives of the machine learning process, making it easy to graft the derived results into other wireless communication technologies. Through simulation, we show that the machine learning approach using the averaged PSD sequence as training data outperforms the other machine learning approach using the channel frequency response (CFR) sequence as training data and two other existing Doppler estimation approaches.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom