z-logo
open-access-imgOpen Access
Improved Tomlinson–Harashima Precoding for Ultra Reliable Communication in Intelligent Transportation Systems
Author(s) -
HE Shi-biao,
Xinyi Yang,
Liao Yong
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/5585892
Subject(s) - precoding , computer science , robustness (evolution) , channel state information , fading , mimo , scheduling (production processes) , channel (broadcasting) , communications system , bit error rate , algorithm , real time computing , wireless , mathematical optimization , computer network , telecommunications , mathematics , biochemistry , chemistry , gene
Cyber-physical systems (CPSs) are characterized by integrating computation and physical processes. To cope with the challenges of the application of the CPSs in all kinds of environments, especially the cellular vehicle-to-everything (C-V2X) which needs high quality end-to-end communication, the robustness and reliability for CPSs are very crucial. Aiming at the technical challenges of information transmission caused by the fading effect and the fast time-varying characteristics of the channel for C-V2X communication, an improved Tomlinson–Harashima precoding (THP) algorithm for multiple input multiple output (MIMO) systems is proposed. Channel state information (CSI) and correlation are exploited to compensate instantaneous CSI, which could reflect current real-time channel status exactly. Further, the iterative water filling power allocation algorithm and the multiuser scheduling algorithm based on the greedy algorithm are jointly optimized and applied to the THP, which could improve the system performance. Simulation results show that the proposed algorithm can be efficiently applied to high-speed mobility scenarios and improve bit error ratio (BER) performance as well as spectrum utilization.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom