z-logo
open-access-imgOpen Access
Map Matching for Fixed Sensor Data Based on Utility Theory
Author(s) -
Kangkang He,
Qi Cao,
Gang Ren,
Dawei Li,
Shuichao Zhang
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/5585131
Subject(s) - map matching , matching (statistics) , computer science , global positioning system , fixed point , computation , path (computing) , real time computing , constraint (computer aided design) , field (mathematics) , data mining , algorithm , mathematics , computer network , telecommunications , mathematical analysis , statistics , geometry , pure mathematics
Map matching can provide useful traffic information by aligning the observed trajectories of vehicles with the road network on a digital map. It has an essential role in many advanced intelligent traffic systems (ITSs). Unfortunately, almost all current map-matching approaches were developed for GPS trajectories generated by probe sensors mounted in a few vehicles and cannot deal with the trajectories of massive vehicle samples recorded by fixed sensors, such as camera detectors. In this paper, we propose a novel map-matching model termed Fixed-MM, which is designed specifically for fixed sensor data. Based on two key observations from real-world data, Fixed-MM considers (1) the utility of each path and (2) the travel time constraint to match the trajectories of fixed sensor data to a specific path. Meanwhile, with the laws derived from the distribution of GPS trajectories, a path generation algorithm was developed to search for candidates. The proposed Fixed-MM was examined with field-test data. The experimental results show that Fixed-MM outperforms two types of classical map-matching algorithms regarding accuracy and efficiency when fixed sensor data are used. The proposed Fixed-MM can identify 68.38% of the links correctly, even when the spatial gap between the sensor pair is increased to five kilometers. The average computation time spent by Fixed-MM on one point is only 0.067 s, and we argue that the proposed method can be used online for many real-time ITS applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom