Assessing Accessibility of Dockless Sharing-Bike Networks by the Social Network Analysis Method
Author(s) -
Pei Liu,
Junlan Chen,
Heyang Sun,
Xiucheng Guo,
Yan Wang,
Zhenjun Zhu
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/5584008
Subject(s) - bike sharing , transport engineering , computer science , construct (python library) , social network analysis , social network (sociolinguistics) , engineering , computer network , world wide web , social media
Dockless sharing bikes play an increasingly significant role in transit transfer, especially for the first/last mile. However, it is not always accessible for users to find sharing bicycles. The objective of this paper is to assess the accessibility of dockless sharing bikes from a network perspective, which would provide a decision-making basis not only for potential bike users but also for urban planners, policymakers, and bicycle suppliers to optimize sharing-bike systems. Considering bicycle travel characteristics, a hierarchical clustering algorithm was applied to construct the dockless sharing-bike network. The social network analysis (SNA) method was adopted to assess the accessibility of the bike network. Then, a spatial interaction model was chosen to conduct a correlation analysis to compare the accessibility obtained from the SNA approach. The case study of Shanghai indicates a strong connection between the accessibility and the SNA indicators with the correlation coefficient of 0.779, which demonstrates the feasibility of the proposed method. This paper contributes to a deep understanding of dockless sharing-bike network accessibility since the SNA approach considers both the interaction barriers and the network structure of a bicycle network. The developed methodology requires fewer data and is easy to operate. Thus, it can serve as a tool to facilitate the smart management of sharing bikes for improving a sustainable transportation system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom