z-logo
open-access-imgOpen Access
Cooperative Antenna Selection Method for Directional Antenna Ad Hoc Networks Based on ALOHA
Author(s) -
Bowen Zheng,
Songlin Sun,
Guoyuan Shao
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/5583653
Subject(s) - computer science , aloha , antenna (radio) , wireless ad hoc network , selection (genetic algorithm) , directional antenna , telecommunications , computer network , throughput , wireless , artificial intelligence
In recent years, directional antennas or phased array antennas are being widely used in communication systems due to the higher antenna gains. However, without external time synchronization and angle synchronization, the unsynchronized node usually takes a long time to synchronize with the existing nodes due to the narrow beams. Although the multibeam transmission or the digital phased array antenna can reduce this problem, it is clear that the cost of the digital phased array antenna is currently too high. Without external time synchronization and angle synchronization, a cooperative antenna selection method based on directional antennas is proposed in this paper. Our method only uses the narrow beams to transmit and to receive and reduces the time for self-synchronization. In this paper, we give the expression of the expected average time for the self-synchronization of multiple nodes, transform the problem into the problem of finding the minimum value of the infinite norm of the sequence, and then propose a cooperative antenna selection method which calculates the optimal transmission probability distribution of the node in different directions through parameter sharing and relative geometric position relationship between nodes. Finally, we verify the proposed method through simulation, and the number of beams is set between 6 and 10. In a typical scenario of five nodes, our method reduces the maximum average self-synchronization time by 50% averagely, compared with the traditional method which sends the different antenna beams at equal probability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom