A Novel Passive Circuit Emulator for a Current-Controlled Memristor
Author(s) -
Leonardo Barboni
Publication year - 2021
Publication title -
active and passive electronic components
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.144
H-Index - 22
eISSN - 1026-7034
pISSN - 0882-7516
DOI - 10.1155/2021/5582774
Subject(s) - memristor , resistor , electronic circuit , inductor , voltage , diode , realization (probability) , capacitance , current (fluid) , electronic engineering , electrical engineering , computer science , attractor , parametric statistics , nonlinear system , topology (electrical circuits) , physics , mathematics , engineering , quantum mechanics , mathematical analysis , statistics , electrode
A memristor is an electrical element, which has been conjectured in 1971 to complete the lumped circuit theory. Currently, researchers use memristor emulators through diodes, inductors, and other passive (or active) elements to study circuits with possible attractors, chaos, and ways of implementing nonlinear transformations for low-voltage novel computing paradigms. However, to date, such passive memristor emulators have been voltage-controlled. In this study, a novel circuit realization of a passive current-controlled passive inductorless emulator is established. It overcomes the lack of passive current-controlled memristor commercial devices, and it can be used as part of more sophisticated circuits. Moreover, it covers a gap in the state of the art because, currently, only passive circuit voltage-controlled memristor emulators and active current-controlled emulators have been developed and used. The emulator only uses two diodes, two resistors, and one capacitance and is passive. The formal theory and simulations validate the proposed circuit, and experimental measurements were performed. The parameter conditions of numerical simulations and experiments are consistent. Simulations were performed with an input current amplitude of and frequencies of up to and measurements were carried out with an input current amplitude of and frequency of in order to compare with the state of the art.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom