A Novel Interval Evidential Reasoning Approach to the Physical and Mechanical Property Assessment of Particleboards
Author(s) -
Cuiping Yang,
Chao Sun,
Jilai Su,
Wei He,
Zhenhua Gao
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5581870
Subject(s) - interval (graph theory) , property (philosophy) , interval arithmetic , reliability (semiconductor) , evidential reasoning approach , mathematics , computer science , artificial intelligence , decision support system , mathematical analysis , philosophy , power (physics) , physics , business decision mapping , epistemology , combinatorics , quantum mechanics , bounded function
In this paper, a new assessment method based on the interval evidential reasoning (IER) rule is proposed to solve the problem of physical and mechanical property assessment (PMPA) for particleboards. Because the detection data of the density and thickness swelling (TS) of particleboards are in an interval form, a model with precise values as input becomes inappropriate, so the PMPA of particleboards is not feasible. In the proposed method, expert knowledge and interval data are integrated to solve the assessment problem. First, the overall reliability of attributes is calculated, and the interval data are transformed into an interval belief structure. Then, the multiple interval belief structures are aggregated by ER nonlinear optimization models. Finally, the assessment results are obtained by utility theory. With the proposed method, the PMPA of particleboards with interval values can be assessed reasonably, and the combination interval belief degree of different grades of particleboard can be obtained, which has a certain guiding significance for the production and subsequent operation of enterprises. A case study for the PMPA of particleboards is conducted to demonstrate the effectiveness of the proposed method.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom