z-logo
open-access-imgOpen Access
Solving the Modified Regularized Long Wave Equations via Higher Degree B-Spline Algorithm
Author(s) -
Pshtiwan Othman Mohammed,
Manar A. Alqudah,
Y. S. Hamed,
Artion Kashuri,
Khadijah M. Abualnaja
Publication year - 2021
Publication title -
journal of function spaces
Language(s) - English
Resource type - Journals
eISSN - 2314-8896
pISSN - 2314-8888
DOI - 10.1155/2021/5580687
Subject(s) - b spline , degree (music) , mathematics , algorithm , mathematical analysis , computer science , physics , acoustics
The current article considers the sextic B-spline collocation methods (SBCM1 and SBCM2) to approximate the solution of the modified regularized long wave ( MRLW ) equation. In view of this, we will study the solitary wave motion and interaction of higher (two and three) solitary waves. Also, the modified Maxwellian initial condition into solitary waves is studied. Moreover, the stability analysis of the methods has been discussed, and these will be unconditionally stable. Moreover, we have calculated the numerical conserved laws and error norms L 2 and L ∞ to demonstrate the efficiency and accuracy of the method. The numerical examples are presented to illustrate the applications of the methods and to compare the computed results with the other methods. The results show that our proposed methods are more accurate than the other methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom