Study on Stability of Shield Tunnel Excavation Face in Soil-Rock Composite Stratum
Author(s) -
Hongtao Sui,
Chao Ma,
Chunquan Dai,
Tingzhi Yang
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5579103
Subject(s) - geotechnical engineering , excavation , stratum , shield , cohesion (chemistry) , instability , lateral earth pressure , geology , composite number , finite element method , bearing capacity , engineering , structural engineering , materials science , petrology , composite material , mechanics , chemistry , physics , organic chemistry
In order to study the instability mode of shield excavation face in soil-rock composite stratum and determine the ultimate support pressure of excavation face, this paper selects two typical soil-rock composite strata and uses three-dimensional finite element software to study the failure development process of shield excavation face. Based on the principle of limit equilibrium, a calculation model of limit support pressure for soil-rock composite stratum is proposed and applied to practical engineering. It is found that the shape of “unloading loosening zone” is mainly determined by the properties of upper soil and the properties of lower rock mainly determine the scope and shape of “sliding instability zone.” With the increase of soil proportion coefficient, the ultimate bearing capacity increases nonlinearly and the growth rate decreases gradually. At the same time, the influence of overlying Earth pressure and soil cohesion cannot be ignored.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom