Formulation of Insect Chitosan Stabilized Silver Nanoparticles with Propolis Extract as Potent Antimicrobial and Wound Healing Composites
Author(s) -
Mohammed S. AlSaggaf
Publication year - 2021
Publication title -
international journal of polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 33
eISSN - 1687-9430
pISSN - 1687-9422
DOI - 10.1155/2021/5578032
Subject(s) - antimicrobial , propolis , chitosan , candida albicans , staphylococcus aureus , materials science , composite number , wound healing , microbiology and biotechnology , hermetia illucens , chemistry , food science , biology , bacteria , immunology , biochemistry , composite material , botany , larva , genetics
Skin wounds are frequently influenced with microbial infections and inflammation, which need innovative agents for disputing them. Chitosan (Csn) was extracted from larvae of BSF “black soldier fly, Hermetia illucens” and ethanolic propolis extract (Pro) was employed for synthesizing silver nanoparticles (Ag-NPs), using facile biogenic protocol. The BSF-Csn was acquired with a yield of 1.56%, 91.3% deacetylation degree, and 88.600 Dalton molecular weight. The Ag-NPs were effectually biosynthesized using Pro, with a mean diameter of 8.73 nm and zeta potential of -21.34 mV. The antimicrobial activities assessment of insect Csn, Pro, synthesized Ag-NPs with Pro, and their composite against skin pathogens (Staphylococcus aureus and Candida albicans) revealed the elevated efficiency of the individual agents and the superior action of their composite (Csn/Pro/Ag-NPs), with 26.3 and 23.4 mm inhibition zones and inhibitory concentrations of 35.0 and 45.0 μg/mL from the composite toward S. aureus and C. albicans, respectively, which exceeded the actions of commercial antibiotics. The treatment of rat’s wounds with this composite promisingly led to faster healing of wounds and absence of inflammation and infection signs. The powerful actions of Csn/Pro/Ag-NPs as antimicrobial and wound healing composite strongly advocate their applications for skin protection, disinfection, and regeneration.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom