z-logo
open-access-imgOpen Access
Double Deep Recurrent Reinforcement Learning for Centralized Dynamic Multichannel Access
Author(s) -
Qianhong Cong,
Wenhui Lang
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/5577756
Subject(s) - computer science , reinforcement learning , artificial intelligence , computer network , distributed computing
We consider the problem of dynamic multichannel access for transmission maximization in multiuser wireless communication networks. The objective is to find a multiuser strategy that maximizes global channel utilization with a low collision in a centralized manner without any prior knowledge. Obtaining an optimal solution for centralized dynamic multichannel access is an extremely difficult problem due to the large-state and large-action space. To tackle this problem, we develop a centralized dynamic multichannel access framework based on double deep recurrent Q-network. The centralized node first maps current state directly to channel assignment actions, which can overcome prohibitive computation compared with reinforcement learning. Then, the centralized node can be easy to select multiple channels by maximizing the sum of value functions based on a trained neural network. Finally, the proposed method avoids collisions between secondary users through centralized allocation policy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom