z-logo
open-access-imgOpen Access
The Effect of a Traditional Preparation Containing Piper nigrum L. and Bunium persicum (Boiss.) B.Fedtsch. on Immobility Stress-Induced Memory Loss in Mice
Author(s) -
Marzieh Rashedinia,
Mina Mojarad,
Forouzan Khodaei,
Ali Sahragard,
Mohammad Javad Khoshnoud,
Mohammad M. Zarshenas
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/5577594
Subject(s) - acetylcholinesterase , superoxide dismutase , oxidative stress , malondialdehyde , antioxidant , catalase , glutathione , aché , pharmacology , chemistry , choline acetyltransferase , traditional medicine , medicine , biochemistry , enzyme , acetylcholine
Objective Alzheimer's disease is a progressive, age-related, and neurodegenerative disease characterized by mental decline. The exact cause of Alzheimer's disease is unclear, but cholinergic dysfunction, protein accumulation, and oxidative stress are among the most important hypotheses. The main purpose of our study was to investigate the effects of aqueous and hydroalcoholic extract combination of these two medicinal plants, black pepper and cumin (as a related formulation in traditional Persian medicine), on memory and learning of an immobilized stress animal model.Methods In this study, hydroalcoholic and aqueous extracts of cumin and black pepper fruits were prepared. Six groups of mice were treated orally for 2 weeks: control group, immobility stress, and stress-induced immobility mice received different doses of the hydroalcoholic extract (100 and 200 mg/kg) and aqueous extract (100 and 200 mg/kg). The shuttle box, novel object detection, and rotarod test were used to evaluate memory and learning. The activities of acetylcholinesterase, catalase (CAT), and superoxide dismutase (SOD) and the level of reduced glutathione (GSH) and malondialdehyde (MDA) were measured in the brain tissue.Results Immobility stress significantly reduced learning and motor coordination. Furthermore, MDA levels and acetylcholinesterase activity were significantly increased, while CAT and SOD activities were significantly reduced in the brain of immobility-induced stress mice. Other findings indicated that hydroalcoholic and aqueous extracts (100 and 200 mg/kg) of cumin and black pepper fruits have an improving effect on animal motor coordination and learning ability, GSH content, and CAT, SOD, and acetylcholinesterase enzyme function in comparison with stress groups ( p < 0.05).Conclusion The hydroalcoholic and aqueous extracts of cumin and black pepper fruits have protective effects against stress-induced memory deficit and oxidative stress and may have beneficial therapeutic effect in the treatment of neurodegenerative diseases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom