Multideep Feature Fusion Algorithm for Clothing Style Recognition
Author(s) -
Yuhua Li,
Zhiqiang He,
Sunan Wang,
Zicheng Wang,
Wanwei Huang
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/5577393
Subject(s) - artificial intelligence , clothing , computer science , residual , pattern recognition (psychology) , convolution (computer science) , feature extraction , feature (linguistics) , process (computing) , convolutional neural network , deep learning , focus (optics) , layer (electronics) , computer vision , artificial neural network , algorithm , linguistics , philosophy , physics , chemistry , archaeology , organic chemistry , optics , history , operating system
In order to improve recognition accuracy of clothing style and fully exploit the advantages of deep learning in extracting deep semantic features from global to local features of clothing images, this paper utilizes the target detection technology and deep residual network (ResNet) to extract comprehensive clothing features, which aims at focusing on clothing itself in the process of feature extraction procedure. Based on that, we propose a multideep feature fusion algorithm for clothing image style recognition. First, we use the improved target detection model to extract the global area, main part, and part areas of clothing, which constitute the image, so as to weaken the influence of the background and other interference factors. Then, the three parts were inputted, respectively, to improve ResNet for feature extraction, which has been trained beforehand. The ResNet model is improved by optimizing the convolution layer in the residual block and adjusting the order of the batch-normalized layer and the activation layer. Finally, the multicategory fusion features were obtained by combining the overall features of the clothing image from the global area, the main part, to the part areas. The experimental results show that the proposed algorithm eliminates the influence of interference factors, makes the recognition process focus on clothing itself, greatly improves the accuracy of the clothing style recognition, and is better than the traditional deep residual network-based methods.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom