Enhancing Railway Maintenance Safety Using Open-Source Computer Vision
Author(s) -
DongHee Shin,
Jin JangWon,
Jooyoung Kim
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/5575557
Subject(s) - train , railway system , preventive maintenance , work (physics) , engineering , transport engineering , computer science , reliability engineering , mechanical engineering , cartography , geography
As high-speed railways continue to be constructed, more maintenance work is needed to ensure smooth operation. However, this leads to frequent accidents involving maintenance workers at the tracks. Although the number of such accidents is decreasing, there is an increase in the number of casualties. When a maintenance worker is hit by a train, it invariably results in a fatality; this is a serious social issue. To address this problem, this study utilized the tunnel monitoring system installed on trains to prevent railway accidents. This was achieved by using a system that uses image data from the tunnel monitoring system to recognize railway signs and railway tracks and detect maintenance workers on the tracks. Images of railway signs, tracks, and maintenance workers on the tracks were recorded through image data. The Computer Vision OpenCV library was utilized to extract the image data. A recognition and detection algorithm for railway signs, tracks, and maintenance workers was constructed to improve the accuracy of the developed prevention system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom