Robust LQR-Based Neural-Fuzzy Tracking Control for a Lower Limb Exoskeleton System with Parametric Uncertainties and External Disturbances
Author(s) -
Jyotindra Narayan,
Santosha K. Dwivedy
Publication year - 2021
Publication title -
applied bionics and biomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.397
H-Index - 23
eISSN - 1754-2103
pISSN - 1176-2322
DOI - 10.1155/2021/5573041
Subject(s) - control theory (sociology) , exoskeleton , parametric statistics , robust control , sliding mode control , linear quadratic regulator , robustness (evolution) , controller (irrigation) , engineering , nonlinear system , lyapunov function , computer science , control system , mathematics , optimal control , simulation , artificial intelligence , mathematical optimization , biology , quantum mechanics , physics , electrical engineering , gene , agronomy , biochemistry , statistics , chemistry , control (management)
The design of an accurate control scheme for a lower limb exoskeleton system has few challenges due to the uncertain dynamics and the unintended subject's reflexes during gait rehabilitation. In this work, a robust linear quadratic regulator- (LQR-) based neural-fuzzy (NF) control scheme is proposed to address the effect of payload uncertainties and external disturbances during passive-assist gait training. Initially, the Euler-Lagrange principle-based nonlinear dynamic relations are established for the coupled system. The input-output feedback linearization approach is used to transform the nonlinear relations into a linearized state-space form. The architecture of the adaptive neuro-fuzzy inference system (ANFIS) and used membership function are briefly explained. While varying mass parameters up to 20%, three robust neural-fuzzy datasets are formulated offline with the joint error vector and LQR control input. Thereafter, to deal with external interferences, an error dynamics with a disturbance estimator is presented using an online adaptation of the firing strength matrix. The Lyapunov theory is carried out to ensure the asymptotic stability of the coupled human-exoskeleton system in view of the proposed controller. The gait tracking results for the proposed control scheme (RLQR-NF) are presented and compared with the exponential reaching law-based sliding mode (ERL-SM) controller. Furthermore, to investigate the robustness of the proposed control over LQR control, a comparative performance analysis is presented for two cases of parametric uncertainties and external disturbances. The first case considers the 20% raise in mass values with a trigonometric form of disturbances, and the second case includes the effect of the 30% increment in mass values with a random form of disturbances. The simulation runs have shown the promising gait tracking aspects of the designed controller for passive-assist gait training.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom