Integrated Image Sensor and Light Convolutional Neural Network for Image Classification
Author(s) -
ChengJian Lin,
Chun-Hui Lin,
Shyh-Hau Wang
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5573031
Subject(s) - convolutional neural network , computer science , artificial intelligence , computation , robot , deep learning , contextual image classification , image (mathematics) , resource (disambiguation) , task (project management) , computer vision , machine learning , pattern recognition (psychology) , engineering , algorithm , computer network , systems engineering
Deep learning has accomplished huge success in computer vision applications such as self-driving vehicles, facial recognition, and controlling robots. A growing need for deploying systems on resource-limited or resource-constrained environments such as smart cameras, autonomous vehicles, robots, smartphones, and smart wearable devices drives one of the current mainstream developments of convolutional neural networks: reducing model complexity but maintaining fine accuracy. In this study, the proposed efficient light convolutional neural network (ELNet) comprises three convolutional modules which perform ELNet using fewer computations, which is able to be implemented in resource-constrained hardware equipment. The classification task using CIFAR-10 and CIFAR-100 datasets was used to verify the model performance. According to the experimental results, ELNet reached 92.3% and 69%, respectively, in CIFAR-10 and CIFAR-100 datasets; moreover, ELNet effectively lowered the computational complexity and parameters required in comparison with other CNN architectures.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom