Statistical Study of the Entanglement for Qubit Interacting with an Electromagnetic Field
Author(s) -
Neveen Sayed-Ahmed,
M. M. Amein,
Taghreed M. Jawa,
Tahani A. Aloafi,
F. S. Bayones,
Azhari A. Elhag,
Jamel Bouslimi
Publication year - 2021
Publication title -
advances in mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.283
H-Index - 23
eISSN - 1687-9139
pISSN - 1687-9120
DOI - 10.1155/2021/5571796
Subject(s) - quantum entanglement , qubit , electromagnetic field , field (mathematics) , physics , quantum mechanics , quantum electrodynamics , statistical physics , mathematics , quantum , pure mathematics
A statistical method is applied to predict the behaviour of a quantum model consisting of a qubit interacting with a single-mode cavity field. The qubit is prepared in excited state while the field starts from the binomial distribution state. The wave function of the proposed model is obtained. A von Neumann entropy is used to investigate the behaviour of the entanglement between the field and the qubits. Moreover, the atomic Q and Wigner functions are used to identify the behaviour of the distribution in a phase space. The simulation method is used to estimate the parameters of the proposed model to reach the best results. A numerical study is performed to estimate the specific dependency of the binomial distribution state. The results of entanglement were compared with the atomic Q and Wigner functions. The results showed that there are many maximum values of entanglement periodically. The results also confirmed a correlation between von Neumann entropy, the atomic Q , and Wigner functions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom