Evolution of Deep Neural Network Architecture Using Particle Swarm Optimization to Improve the Performance in Determining the Friction Angle of Soil
Author(s) -
Tuan Anh Pham,
Van Quan Tran,
Huong-Lan Thi Vu
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5570945
Subject(s) - particle swarm optimization , mean squared error , artificial neural network , correlation coefficient , sensitivity (control systems) , mean absolute percentage error , coefficient of determination , standard penetration test , approximation error , algorithm , mathematics , computer science , engineering , soil science , artificial intelligence , statistics , geotechnical engineering , environmental science , electronic engineering , liquefaction
This study focuses on the use of deep neural network (DNN) to predict the soil friction angle, one of the crucial parameters in geotechnical design. Besides, particle swarm optimization (PSO) algorithm was used to improve the performance of DNN by selecting the best structural DNN parameters, namely, the optimal numbers of hidden layers and neurons in each hidden layer. For this aim, a database containing 245 laboratory tests collected from a project in Ho Chi Minh city, Vietnam, was used for the development of the proposed hybrid PSO-DNN model, including seven input factors (soil state, standard penetration test value, unit weight of soil, void ratio, thickness of soil layer, top elevation of soil layer, and bottom elevation of soil layer) and the friction angle was considered as the target. The data set was divided into three parts, namely, the training, validation, and testing sets for the construction, validation, and testing phases of the model. Various quality assessment criteria, namely, the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE), were used to estimate the performance of PSO-DNN models. The PSO algorithm showed a remarkable ability to find out an optimal DNN architecture for the prediction process. The results showed that the PSO-DNN model using 10 hidden layers outperformed the DNN model, in which the average correlation improvement increased R2 by 1.83%, MAE by 5.94%, and RMSE by 8.58%. Besides, a global sensitivity analysis technique was used to detect the most important inputs, and it showed that, among the seven input variables, the elevation of top and bottom of soil played an important role in predicting the friction angle of soil.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom