z-logo
open-access-imgOpen Access
The E-Bayesian Estimation for Lomax Distribution Based on Generalized Type-I Hybrid Censoring Scheme
Author(s) -
Kaiwei Liu,
Yuxuan Zhang
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5570320
Subject(s) - censoring (clinical trials) , lomax distribution , mathematics , markov chain monte carlo , bayesian probability , mean squared error , statistics , bayes estimator , algorithm , pareto distribution
This article studies the E-Bayesian estimation of the unknown parameter of Lomax distribution based on generalized Type-I hybrid censoring. Under square error loss and LINEX loss functions, we get the E-Bayesian estimation and compare its effectiveness with Bayesian estimation. To measure the error of E-Bayesian estimation, the expectation of mean square error (E-MSE) is introduced. With Markov chain Monte Carlo technology, E-Bayesian estimations are computed. Metropolis–Hastings algorithm is applied within the process. Similarly, the credible interval for the parameter is calculated. Then, we can compare the MSE and E-MSE to evaluate whose result is more effective. For the purpose of illustration in real datasets, cases of generalized Type-I hybrid censored samples are presented. In order to judge whether the sample data can be directly fitted by the Lomax distribution, we adopt the Kolmogorov–Smirnov tests for evaluation. Finally, we can get the conclusion after comparing the results of E-Bayesian and Bayesian estimation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom