z-logo
open-access-imgOpen Access
Incentives against Max‐Min Fairness in a Centralized Resource System
Author(s) -
Zheng Chen,
Zhaoquan Gu,
Yuexuan Wang
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/5570104
Subject(s) - computer science , incentive , resource (disambiguation) , computer security , computer network , microeconomics , economics
Resource allocating mechanisms draw much attention from various areas, and exploring the truthfulness of these mechanisms is a very hot topic. In this paper, we focus on the max-min fair allocation in a centralized resource system and explore whether the allocation is truthful when a node behaves strategically. The max-min fair allocation enables nodes receive appropriate resources, and we introduce an efficient algorithm to find out the allocation. To explore whether the allocation is truthful, we analyze how the allocation varies when a new node is added to the system, and we discuss whether the node can gain more resources if it misreports its resource demands. Surprisingly, if a node misrepresents itself by creating several fictitious nodes but keeps the sum of these nodes’ resource demands the same, the node can achieve more resources evidently. We further present some illustrative examples to verify the results, and we show that a node can achieve 1.83 times resource if it misrepresents itself as two nodes. Finally, we discuss the influence of node’s misrepresenting behavior in tree graph: some child nodes gain fewer resources even if their parent node gains more resources by creating two fictitious nodes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom