z-logo
open-access-imgOpen Access
Optimal Operation of the Campus Microgrid considering the Resource Uncertainty and Demand Response Schemes
Author(s) -
Hafiz Abdul Muqeet,
Hafiz Mudassir Munir,
Aftab Ahmad,
Intisar Ali Sajjad,
GuangJun Jiang,
Hongxia Chen
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5569701
Subject(s) - microgrid , demand response , photovoltaic system , dispatchable generation , mathematical optimization , computer science , energy storage , distributed generation , energy management , grid , greenhouse gas , renewable energy , reliability engineering , electricity , engineering , energy (signal processing) , power (physics) , electrical engineering , mathematics , ecology , physics , statistics , geometry , quantum mechanics , biology
Present power systems face problems such as rising energy charges and greenhouse gas (GHG) releases. These problems may be assuaged by participating distributed generators (DGs) and demand response (DR) policies in the distribution system (DS). The main focus of this paper is to propose an energy management system (EMS) approach for campus microgrid (µG). For this purpose, a Pakistani university has been investigated and an optimal solution has been proposed. Conventionally, it contains electricity from the national grid only as a supply to fulfil the energy demand. Under the proposed setup, it contains campus owned nondispatchable DGs such as solar photovoltaic (PV) panels and microturbines (MTs) as dispatchable sources. To overcome the random nature of solar irradiance, station battery has been integrated as energy storage. The subsequent nonlinear mathematical problem has been scheduled by mixed-integer nonlinear programming (MINLP) in MATLAB for saving energy cost and battery aging cost. The framework has been validated under deterministic and stochastic environments. Among random parameters, solar irradiance and load have been taken into consideration. Case studies have been carried out considering the demand response strategies to analyze the proposed model. The obtained results show that optimal management and scheduling of storage in the presence of DGs mutually benefit by minimizing consumption cost (customer) and grid load (utility) which show the efficacy of the proposed model. The results obtained are compared to the existing literature and a significant cost reduction is found.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom