Securing NDN‐Based Internet of Health Things through Cost‐Effective Signcryption Scheme
Author(s) -
Aroosa,
Syed Sajid Ullah,
Saddam Hussain,
Roobaea Alroobaea,
Ihsan Ali
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/5569365
Subject(s) - signcryption , computer science , scheme (mathematics) , internet of things , the internet , computer network , computer security , internet privacy , world wide web , encryption , public key cryptography , mathematical analysis , mathematics
The Internet of Health Things (IoHT) is an extended version of the Internet of Things that is acting a starring role in data sharing remotely. These remote data sources consist of physiological processes, such as treatment progress, patient monitoring, and consultation. The main purpose of IoHT platform is to intervene independently from geographically remote areas by providing low-cost preventive or active healthcare services. Several low-power biomedical sensors with limited computing capabilities provide IoHT’s communication, integration, computation, and interoperability. However, IoHT transfers IoT data via IP-centric Internet, which has implications for security and privacy. To address this issue, in this paper, we suggest using named data networking (NDN), a future Internet model that is well suited for mobile patients and caregivers. As the IoHT contains a lot of personal information about a user’s physical condition, which can be detrimental to users’ finances and health if leaked, therefore, data protection is important in the IoHT. Experts and scholars have researched this area, but the reconstruction of existing schemes could be further improved. Also, doing computing-intensive tasks leads to slower response times, which further worsens the performance of IoHT. We are trying to resolve such an error, so a new NDN-based certificateless signcryption scheme is proposed for IoHT using the security hardness of the hyperelliptic curve cryptosystem. Security analysis and comparisons with existing schemes show the viability of the designed scheme. The final results confirm that the designed scheme provides better security with minimal computational and communicational resources. Finally, we validate the security of the designed scheme against man-in-the-middle attacks and replay attacks using the AVISPA tool.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom