The Resistive Switching Behavior of Al/Chitosan-Graphene Oxide/FTO Structure
Author(s) -
Hau Huu Do Ho,
Trung Minh Le,
Ngoc Kim Pham
Publication year - 2021
Publication title -
journal of nanomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.463
H-Index - 66
eISSN - 1687-4129
pISSN - 1687-4110
DOI - 10.1155/2021/5565169
Subject(s) - materials science , graphene , thermal conduction , oxide , raman spectroscopy , resistive random access memory , nanotechnology , nanocomposite , non volatile memory , quantum tunnelling , electron , metal , optoelectronics , chemical physics , voltage , composite material , electrical engineering , physics , engineering , quantum mechanics , optics , metallurgy
Resistive random access memory (RRAM) is emerging as a new class of nonvolatile memory that offers promising electronic properties and simple metal-insulator-metal (MIM) structures for sandwich layers, such as organics, inorganics, and hybrid materials. Hybrid structures have attracted much interest recently because of their advantageous properties. The combination of chitosan (CS) and graphene oxide (GO) acts as switching layers in the Al/CS-GO/FTO RRAM structure it is studied with bipolar switching behavior at approximately 102 ON/OFF ratios during 100 cycles. This hybrid interaction is identified by shifts in the D, G, and 2D bands using Raman spectroscopy. The conduction mechanism is proposed to be a space-charge-limited conduction (SCLC) mechanism and trap-assisted tunneling conduction mechanism in the ON and OFF states, respectively. The trapped and detrapped electrons move through the trap sites with external electric fields, and this movement is responsible for the switching mechanism of the CS-GO nanocomposite memory device.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom