z-logo
open-access-imgOpen Access
Bivariate Generalized Shifted Gegenbauer Orthogonal System
Author(s) -
Mohammad Alqudah,
Maalee Almheidat,
Tareq Hamadneh
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/5563032
Subject(s) - mathematics , physics
For K 0 , K 1 ≥ 0 , λ > − 1 / 2 , we examine C r ∗ λ , K 0 , K 1 x , generalized shifted Gegenbauer orthogonal polynomials, with reference to the weight W λ , K 0 , K 1 x = 2 λ Γ 2 λ / Γ λ + 1 / 2 2 x − x 2 λ − 1 / 2 I x ∈ 0,1 d x + K 0 δ 0 + K 1 δ 1 , where the indicator function is denoted by I x ∈ 0,1 and δ x indicates the Dirac δ − measure. Then, we construct a bivariate generalized shifted Gegenbauer orthogonal system ℭ n , r , d ∗ λ , K 0 , K 1 u , v , w over a triangular domain T , with reference to a bivariate measure W λ , γ , K 0 , K 1 u , v , w = Γ 2 λ + 1 / Γ λ + 1 / 2 2 u λ − 1 / 2 1 − v λ − 1 / 2 1 − w γ − 1 I u ∈ 0,1 − w I w ∈ 0,1 d u d w + K 0 δ 0 u + K 1 δ w − 1 u , which is given explicitly in the Bézier form as ℭ n , r , d ∗ λ , K 0 , K 1 u , v , w = ∑ i + j + k = n a i , j , k n , r , d B i , j , k n u , v , w . In addition, for d = 0 , … , k , r = 0,1 , … , n , and n ∈ 0 ∪ ℕ , we write the coefficients a i , j , k n , r , d in closed form and produce an equation that generates the coefficients recursively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom