z-logo
open-access-imgOpen Access
Development of High Accuracy Classifier for the Speaker Recognition System
Author(s) -
Raghad Tariq Al-Hassani,
Doğu Çağdaş Atilla,
Çağatay Aydın
Publication year - 2021
Publication title -
applied bionics and biomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.397
H-Index - 23
eISSN - 1754-2103
pISSN - 1176-2322
DOI - 10.1155/2021/5559616
Subject(s) - mel frequency cepstrum , speech recognition , computer science , additive white gaussian noise , support vector machine , pattern recognition (psychology) , particle swarm optimization , classifier (uml) , artificial intelligence , reverberation , random forest , feature extraction , speaker recognition , white noise , engineering , machine learning , telecommunications , electrical engineering
Speech signal is enriched with plenty of features used for biometrical recognition and other applications like gender and emotional recognition. Channel conditions manifested by background noise and reverberation are the main challenges causing feature shifts in the test and training data. In this paper, a hybrid speaker identification model for consistent speech features and high recognition accuracy is made. Features using Mel frequency spectrum coefficients (MFCC) have been improved by incorporating a pitch frequency coefficient from speech time domain analysis. In order to enhance noise immunity, we proposed a single hidden layer feed-forward neural network (FFNN) tuned by an optimized particle swarm optimization (OPSO) algorithm. The proposed model is tested using 10-fold cross-validation over different levels of Adaptive White Gaussian Noise (AWGN) (0-50 dB). A recognition accuracy of 97.83% was obtained from the proposed model in clean voice environments. However, a noisy channel is realized with lesser impact on the proposed model as compared with other baseline classifiers such as plain-FFNN, random forest (RF), K -nearest neighbour (KNN), and support vector machine (SVM).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom