z-logo
open-access-imgOpen Access
Crypto-Watermarking Algorithm Using Weber’s Law and AES: A View to Transfer Safe Medical Image
Author(s) -
Sondes Ajili,
Mohamed Ali Hajjaji,
Abdellatif Mtibaa
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/5559191
Subject(s) - digital watermarking , watermark , algorithm , discrete cosine transform , robustness (evolution) , encryption , chaotic , quantization (signal processing) , computer science , pixel , artificial intelligence , embedding , computer vision , mathematics , image (mathematics) , biochemistry , chemistry , gene , operating system
We propose a novel method for medical image watermarking in the DCT domain using the AES encryption algorithm. First, we decompose the original medical image into subblocks of 8 × 8. Besides, we apply the DCT and the quantization, respectively, to each subblock. However, in the DCT domain, an adequate choice of the DCT coefficients according to the quantization table in the middle frequencies band is performed. After that, we embed the patient’s data into the corresponding medical image. The insertion step is carried out just after the quantization phase. To increase the robustness, we encrypt the watermarked medical images by using the AES algorithm based on chaotic technique. Arnold’s cat map is used to shuffle the pixel values, and a chaotic Henon map is utilized to generate an aleatory sequence for the AES algorithm. The shuffled watermarked image is encrypted using the modified AES algorithm. The constant of Weber is used to choose the suitable visibility factor for embedding a watermark with high robustness. To control identification, after application of attacks, we use the serial turbo code for correction of the watermark to recover the data inserted. The average peak signal-to-noise ratio (PSNR) of the medical images obtained is 61,7769 dB. Experimental results demonstrate the robustness of the proposed schema against various types of attacks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom