A Chaotic Elite Niche Evolutionary Algorithm for Low-Power Clustering in Environment Monitoring Wireless Sensor Networks
Author(s) -
Bao Liu,
Rui Yang,
Mengying Xu,
Jie Zhou
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/5558643
Subject(s) - cluster analysis , chaotic , niche , wireless sensor network , wireless , computer science , power (physics) , computer network , artificial intelligence , telecommunications , biology , ecology , physics , quantum mechanics
In recent years, as people’s demand for environmental quality has increased, it has become inevitable to monitor sensitive parameters such as temperature and oxygen content. Environmental monitoring wireless sensor networks (EMWSNs) have become a research hotspot because of their flexibility and high monitoring accuracy. This paper proposes a chaotic elite niche evolutionary algorithm (CENEA) for low-power clustering in EMWSNs. To verify the performance of CENEA, simulation experiments are carried out in this paper. Through simulation experiments, CENEA was compared with shuffled frog leaping algorithm (SFLA), differential evolution algorithm (DE), and genetic algorithm (GA) in the same conditional parameters. The results show that CENEA balances node energy and improved node energy usage efficiency. CENEA’s network energy consumption is reduced by 8.3% compared to SFLA, 3.9% lower than DE, and 4.6% lower than GA. Moreover, CENEA improves the precision and minimizes the computation time.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom