Predicting Heavy Oil Production by Hybrid Data-Driven Intelligent Models
Author(s) -
Songhai Qin,
Jianyi Liu,
Xinping Yang,
Yiyang Li,
Lifeng Zhang,
Zhibin Liu
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/5558623
Subject(s) - artificial neural network , production (economics) , support vector machine , context (archaeology) , computer science , nonlinear system , a priori and a posteriori , oil production , predictive modelling , data mining , artificial intelligence , engineering , machine learning , petroleum engineering , paleontology , economics , macroeconomics , philosophy , physics , epistemology , quantum mechanics , biology
It is difficult to determine the main control factors owing to the complex geological conditions of heavy oil reservoirs, including high viscosity, a wide range of variation of crude oil, and the great difference in production between different recovery methods. In this context, main control factors of heavy oil production in different recovery methods are analyzed and obtained based on the Apriori algorithm. The prediction of heavy oil production is faced with problems such as low prediction precision and insufficient data usage. Therefore, a novel intelligent simulation and prediction model of data-driven heavy oil production with time-varying characteristics is established based on differential simulation, machine learning, and intelligent optimization theory, which overcomes the defects of nonlinear, multifactor, and low fitting precision of dynamic data of heavy oil development. The parameters of the heavy oil production time-varying simulation model are identified by the least square support vector machine (LSSVM) to realize the intelligent prediction of the production. Numerical experiments show that the prediction result of the novel intelligent simulation and prediction model is better than the BP neural network model and the GM (1, N) model. This study provides a novel feasible method for data-driven heavy oil production prediction, and it can be helpful in further study of data-driven heavy oil production.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom