Automatic Recharging Path Planning for Cleaning Robots
Author(s) -
Bing Hao,
He Du,
Xuefeng Dai,
Liang Hong
Publication year - 2021
Publication title -
mobile information systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.346
H-Index - 34
eISSN - 1875-905X
pISSN - 1574-017X
DOI - 10.1155/2021/5558096
Subject(s) - computer science , motion planning , dijkstra's algorithm , path (computing) , robot , plan (archaeology) , graph , convergence (economics) , any angle path planning , shortest path problem , mathematical optimization , real time computing , artificial intelligence , theoretical computer science , mathematics , computer network , archaeology , economics , economic growth , history
To solve the problem of automatic recharging path planning for cleaning robots in complex industrial environments, this paper proposes two environmental path planning types based on designated charging location and multiple charging locations. First, we use the improved Maklink graph to plan the complex environment; then, we use the Dijkstra algorithm to plan the global path to reduce the complex two-dimensional path planning to one dimension; finally, we use the improved fruit fly optimization algorithm (IFOA) to adjust the path nodes for shorting the path length. Simulation experiments show that the effectiveness of using this path planning method in a complex industrial environment enables the cleaning robot to select a designated location or the nearest charging location to recharge when the power is limited. The proposed improved algorithm has the characteristics of a small amount of calculation, high precision, and fast convergence speed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom