A Sentence-Level Joint Relation Classification Model Based on Reinforcement Learning
Author(s) -
Zhen Liu,
Xiaoqiang Di,
Wei Song,
Weiwu Ren
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/5557184
Subject(s) - computer science , sentence , relation (database) , reinforcement learning , relationship extraction , artificial intelligence , joint (building) , noise (video) , task (project management) , natural language processing , machine learning , information extraction , data mining , architectural engineering , image (mathematics) , management , engineering , economics
Relation classification is an important semantic processing task in the field of natural language processing (NLP). Data sources generally adopt remote monitoring strategies to automatically generate large-scale training data, which inevitably causes label noise problems. At the same time, another challenge is that important information can appear at any place in the sentence. This paper presents a sentence-level joint relation classification model. The model has two modules: a reinforcement learning (RL) agent and a joint network model. In particular, we combine bidirectional long short-term memory (Bi-LSTM) and attention mechanism as a joint model to process the text features of sentences and classify the relation between two entities. At the same time, we introduce an attention mechanism to discover hidden information in sentences. The joint training of the two modules solves the noise problem in relation extraction, sentence-level information extraction, and relation classification. Experimental results demonstrate that the model can effectively deal with data noise and achieve better relation classification performance at the sentence level.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom