z-logo
open-access-imgOpen Access
Commodity Image Classification Based on Improved Bag‐of‐Visual‐Words Model
Author(s) -
Huadong Sun,
Xu Zhang,
Xiaowei Han,
Xuesong Jin,
Zhijie Zhao
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/5556899
Subject(s) - bag of words model in computer vision , computer science , artificial intelligence , pattern recognition (psychology) , feature extraction , visual word , feature (linguistics) , semantic gap , semantic feature , bag of words model , semantics (computer science) , image retrieval , histogram , robustness (evolution) , computer vision , image (mathematics) , linguistics , philosophy , biochemistry , chemistry , gene , programming language
With the increasing scale of e-commerce, the complexity of image content makes commodity image classification face great challenges. Image feature extraction often determines the quality of the final classification results. At present, the image feature extraction part mainly includes the underlying visual feature and the intermediate semantic feature. The intermediate semantics of the image acts as a bridge between the underlying features and the advanced semantics of the image, which can make up for the semantic gap to a certain extent and has strong robustness. As a typical intermediate semantic representation method, the bag-of-visual-words (BoVW) model has received extensive attention in image classification. However, the traditional BoVW model loses the location information of local features, and its local feature descriptors mainly focus on the texture shape information of local regions but lack the expression of color information. Therefore, in this paper, the improved bag-of-visual-words model is presented, which contains three aspects of improvement: (1) multiscale local region extraction; (2) local feature description by speeded up robust features (SURF) and color vector angle histogram (CVAH); and (3) diagonal concentric rectangular pattern. Experimental results show that the three aspects of improvement to the BoVW model are complementary, while compared with the traditional BoVW and the BoVW adopting SURF + SPM, the classification accuracy of the improved BoVW is increased by 3.60% and 2.33%, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom