A Lightweight Deep Learning-Based Pneumonia Detection Approach for Energy-Efficient Medical Systems
Author(s) -
Bandar Almaslukh
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/5556635
Subject(s) - hyperparameter , computer science , artificial intelligence , deep learning , machine learning , task (project management) , set (abstract data type) , artificial neural network , feature (linguistics) , pattern recognition (psychology) , linguistics , philosophy , management , economics , programming language
Early detection of pneumonia disease can increase the survival rate of lung patients. Chest X-ray (CXR) images are the primarily means of detecting and diagnosing pneumonia. Detecting pneumonia from CXR images by a trained radiologist is a challenging task. It needs an automatic computer-aided diagnostic system to improve the accuracy of diagnosis. Developing a lightweight automatic pneumonia detection approach for energy-efficient medical systems plays an important role in improving the quality of healthcare with reduced costs and speedier response. Recent works have proposed to develop automated detection models using deep learning (DL) methods. However, the efficiency and effectiveness of these models need to be improved because they depend on the values of the models’ hyperparameters. Choosing suitable hyperparameter values is a critical task for constructing a lightweight and accurate model. In this paper, a lightweight DL approach is proposed using a pretrained DenseNet-121-based feature extraction method and a deep neural network(DNN-) based method with a random search fine-tuning technique. The DenseNet-121 model is selected due to its ability to provide the best representation of lung features. The use of random search makes the tuning process faster and improves the efficiency and accuracy of the DNN model. An extensive set of experiments are conducted on a public dataset of CXR images using a set of evaluation metrics. The experiments show that the approach achieved 98.90% accuracy with an increase of 0.47% compared to the latest approach on the same dataset. Moreover, the experimental results demonstrate the approach that the average execution time for detection is very low, confirming its suitability for energy-efficient medical systems.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom