z-logo
open-access-imgOpen Access
Dissolution, Solubility, and Stability of the Basic Ferric Sulfate-Arsenates [Fe(SO4)x(AsO4)y(OH)z·nH2O] at 25–45°C and pH 2–10
Author(s) -
Zongqiang Zhu,
Hongqu Yang,
Jie Liu,
Yinian Zhu,
Shen Tang,
Lihao Zhang,
Xingxing Wang
Publication year - 2021
Publication title -
journal of chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.436
H-Index - 50
eISSN - 2090-9063
pISSN - 2090-9071
DOI - 10.1155/2021/5556295
Subject(s) - chemistry , dissolution , arsenate , solubility , ferric , arsenic , sulfate , inorganic chemistry , iron sulfate , hydrous ferric oxides , nuclear chemistry , adsorption , organic chemistry , sorption
Basic ferric sulfate-arsenates [FeSAsOH, Fe(SO4)x(AsO4)y(OH)z·nH2O] were prepared and characterized to study their potential fixation of arsenic in the oxidizing and acidic environment through a dissolution for 330d. The synthetic solids were well-shaped monoclinic prismatic crystals. For the dissolution of the sample FeSAsOH–1 [Fe(SO4)0.27(AsO4)0.73 (OH)0.27·0.26H2O] at 25–45°C and initial pH 2, all constituents preferred to be dissolved in the order of AsO43− > SO42− > Fe3+ in 1–3 h, in the order of SO42− > AsO43− > Fe3+ from 1–3 h to 12–24 h, and finally in the order of SO42− > Fe3+ > AsO43−. The released iron, sulfate, and arsenate existed dominantly as Fe3+/Fe(OH)2+/FeSO4+, HSO4−/SO42−/FeSO4+, and H3AsO40/H2AsO4−, respectively. The higher initial pHs (6 and 10) could obviously inhibit the release of Fe3+ from solid into solution, and the solid components were released in the order of SO42− > AsO43− > Fe3+. The crystal tops were first dissolved, and the crystal surfaces were gradually smoothed/rounded until all edges and corners disappeared. The dissociations were restricted by the Fe-O(H) breakdown in the FeO6 octahedra and obstructed by the OH− and AsO4 tetrahedra outliers; the lowest concentration of the dissolved arsenic was 0.045 mg/L. Based on the dissolution experiment at 25°C and pH 2, the solubility products (Ksp) for the basic ferric sulfate-arsenate [Fe(SO4)0.27(AsO4)0.73 (OH)0.27·0.26H2O], which are equal to the ion activity products (logˍIAP) at equilibrium, were calculated to be -23.04 ± 0.01 with the resulting Gibbs free energies of formation (ΔGfo) of −914.06 ± 0.03 kJ/mol.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom